SUMMARY II

Mitch Begelman

JILA, University of Colorado

- What is the "driving science"?
 - Key problems to be solved
- What is the "selling science"?
 - -Tightly argued package
- Increase of discovery space
 - Maximize potential for serendipity
- What important science do we get for "free"?
 - without compromising above or too much extra cost

- What is the "driving science"?
 - -Key problems to be solved
- What is the "selling science"?
 - -Tightly argued package
- Increase of discovery space
 - Maximize potential for serendipity
- What important science do we get for "free"?
 - without compromising above or too much extra cost

Relativistic Lines in Galactic BHs

J. Miller

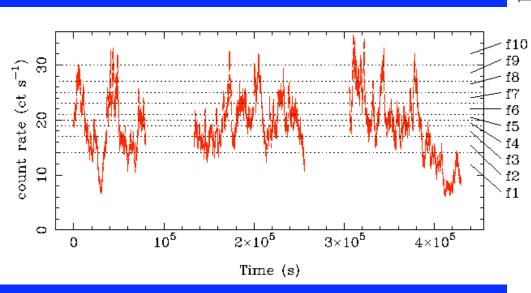
BHC – Seyfert Connections

- Both lines require $R_{in} \sim 2 R_{q}$, high spin (a/M > 0.8-0.9 or so).
- Centrally concentrated emission, $J(r) \sim r^{-q}$, q =4-5 (q=3 expected).
- Inner accretion flows must be remarkably similar.

Lockman Hole

Hasinger

800 ks XMM-Newton observation


Streblyanskaya et al 2004

Constrains absorption by highly ionized species MCG-6-30-15 512ks Chandra HETG; WA fit to broad line Young et al. (2005)

Spectral changes seen in 10 flux slices

BLACK HOLES

Strong gravity effects

- Frame dragging, ISCO, light-bending, QPOs
- Extraction of spin energy
- Mass scaling: GXRBs AGNs
- Check consistency with GR

Astrophysical phenomena

- Extreme MHD, radiation effects in accretion disks
- Origin of relativistic jets
- Black hole spin demographics

Links

- Fundamental physics
- History of black hole growth
- Absorption in outflows (inflows?)
- Feedback in galaxies, clusters

Ejection/outflows: Massive outflows (iii/iii)

(Cappi)

3 other cases certainly do not fit in the McKernan et al. relation 2 high-z BAL Q50s

Chartas, Brandt & Gallagher, 2003

N.B.: Would have been undetected at z=0...

Pounds et al. 2003

Calculation of K band galaxy luminosity function in N body simulation

Gravity+
nydrodynamics no
AGN+ starburst+
reionization - get low
luminosity range

Gravity+ hydrodynam only- get it all wrong-low luminosity, slope, high luminosity slope number and mass in galaxies

10-1 10-2 10-3 10-4 10-5 10-6 10-7 Kochanek et al. (2001) Huang et al. (2002) 10-7 -28 -26 -24 -22 -20 -1 M_K - 5log10h

Gravity+ hydrodynamics +AGN+ starburst+ reionization - get it all 'right'

Thanks to V. Springel and S. White

Blue lines are data black models

Direct Evidence From Chandra Images of Influence of Black holes on their Environment

X-ray temperature Map of Perseus cluster- AGN at the center

 Chandra x-ray image of Cygnus-A Cluster of Galaxies with AGN in center (Wilson et al 2002)- notice the structure related to the radio source

Fabian et al. 2003

Line profile from a turbulent gas

Cluster Velocity Field with Astro E2

The excess entropy in nearby clusters (Arnaud)

[Ponman et al, 03]

[Pratt & Arnaud, 03, 04]

Entropy excess / pure grav. heating Relatively more in low mass systems

Self-similar entropy profiles => Not simple 'pre-heating'

Current ideas: gas history depends on grav heating

PLUS cooling and SN and/or AGN heating (and?)

Processes not understood

Effervescent heating model

Intersection =
fit entropy data
at two radii

Roychowdhury, Ruszkowski, Nath & Begelman 2004

$M_{\rm BH} - M_{\rm cluster}$ relation?

$$M_{\rm BH} \approx 1.5 \times 10^{-3} M_{\rm bulge}$$

$$\approx 1.5 \times 10^{-5} f_{-2} M_{\text{cluster}}$$

$$\approx 6 \times 10^7 \varepsilon_{KE}^{-1} E_{62} M_{solar}$$

Roychowdhury, Ruszkowski, Nath & Begelman 2004

FEEDBACK

Measuring outflows

- Absorption line spectroscopy
- High column-density BALs
- Warm absorbers

Astrophysical phenomena

- Much of BH accretion energy returned to environment
- Starburst-powered winds
- Clusters: quenching cooling flows + raising entropy
- Self-regulated BH growth/history of BH growth

Links

- BH physics: formation of jets and winds
- Evolution of clusters
- Regulation of star formation
- Growth of structure relation to dark energy

Chandra results on $f_{gas}(r)$

(S. Allen)

(Feb 2005)

35 regular, relaxed clusters: [0.05<z<1.1, L_X>10⁴⁵h₅₀⁻² erg/s, kT≥5keV]

 $f_{gas}(r)$ large scatter at small radius but _ approximately universal value at r_{2500}

Weighted mean at r_{2500} $f_{gas}(r_{2500}) = (0.1182 \pm 0.0019)h_{70}^{-1}$ $f_{gas}(r_{2500}) = (0.0692 \pm 0.0011)h^{-1.5}$

For $_{-b}$ h^2 =0.0214±0.0020 (Kirkman et al. '03), h=0.72±0.08 (Freedman et al. '01)

$$\Omega_{\rm m} = \frac{(0.0437 \pm 0.0041) h_{70}^{-0.5}}{(0.1182 \pm 0.0019)(1 + 0.16 h_{70}^{-0.5})} = 0.314 \pm 0.036$$

•Apparent variation of f_{gas} with redshift:

However, measured $f_{\rm gas}(z)$ values depend upon assumed distances to clusters $f_{\rm gas} \propto d^{1.5}$. This introduces apparent systematic variations in $f_{\rm gas}(z)$ depending on the differences between the reference cosmology and the true cosmology.

Inspection clearly favours _CDM over SCDM cosmology.

Hierarchical model of structure formation

 $P(k)+\Lambda CDM$ cosmology=>'standard' hierarchical scenario of structure formation

X-ray observations to study:

- The clusters of galaxies (DM + hot gas)
 The largest 'virialized' mass concentrations
 from z ~ 2 till now
- The warm/hot filaments since z ~ 1-2

The 'missing' baryons and the WHIM

- •BBN + CMB: Ω_b =(4.6±0.4)%.
 - z>2, Damped-Ly- α pop. + Ly- α clouds
 - z<2, Ly α abs. + galaxies + clusters = (2.5±0.3)%.
 - ~ 50% of the baryons are 'missing'
- •In WHIM (filaments) at low z?

Large fraction or paryons at 1~10°-10′ K

Detect (started) and study properties (dMdzdN, temperature, metallicity) versus z

Probe LSS/galaxy formation

[Fang, Bryan & Canizares 2002]

[Fang & Canizares 2002]

Column densities

Distributions of absorbers

Using absorption lines in X-ray

Mission requirements

 $(S/N) \sim 50 \text{ x } [(S_{eff}/10 \text{ m}^2)\text{QE t/}(100 \text{ ks}) \text{ S/}(10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1})]^{1/2}\Delta^{-1} \text{ (eV)}$ Sensitivity (EW) $\sim \Delta/10$

Cryo imaging spect

Gratings

QE~0.5-1

 $\Delta \sim 1 \text{ eV}$

Shorter exposures

Higher z

Weaker absorbers

Broader sampling

More detailed sampling

 $\Delta \sim 0.1 \text{ eV}$

 $\overline{\text{QE}} \sim 0.03$

DARK ENERGY

- Dark energy EOS
 - Gas fraction as a precision measure?
 - Complementary to SZ; better than SZ?
- Astrophysical phenomena
 - Formation of structure/cosmic web
 - Cluster evolution
 - Galaxy formation/history of *formation/abundances
 - History of BH growth
- Links
 - Fundamental physics
 - BH physics: feedback

DRIVING SCIENCE

- Black holes
 - Iron lines profiles, variability; QPOs?
 - Black hole spin demographics
 - LT effect, extraction of spin energy
 - Consistency with GR
- Feedback, large scale structure
 - Effects of BH growth on clusters
 - Outflows (inflows?) from absorption
 - Missing baryons
 - History of black hole growth
- Dark energy
 - Clusters
 - Cosmic web

OTHER SCIENCE

- Dynamical plasmas
 - SNR ejecta, shocks; stellar coronae, winds;
 ISM
 - Abundances
 - Tie-in with ICM: turbulence, transport
 - High-resolution spectroscopy w/imaging
- Compact objects
 - Neutron star EOS (tie-in to BH science)
 - NS QPOs (how much timing for "free"?)
- Galaxies and their environments
 - Starbursts, AGNs, galactic winds
 - Tie-in to feedback
 - Abundances, distribution of elements

STRAWMAN

- Highest feasible throughput (> 5m²?)
 - Faint AGNs, XRBs
 - Reverberation, variability
 - Imaging clusters
- Resolution better than 5"
 - Clusters
 - Confusion
- Spectroscopy R>1500? (resolve 200 km/s)
 - Feedback flows, cluster weather
 - Absorption lines, cosmic web (+SNe, coronae for free)
- FOV > 3'(?)
 - Clusters, filaments (imaging spectroscopy?)
- High energy > 20 keV